
Targeting At-risk Students Using Engagement
and Effort Predictors in an Introductory

Computer Programming Course

David Azcona1,2, and Alan F. Smeaton1,2

1 Insight Centre for Data Analytics
2 School of Computing

Dublin City University, Glasnevin, Dublin 9, Ireland.
David.Azcona@insight-centre.org

Abstract. This paper presents a new approach to automatically detect-
ing lower-performing or “at-risk” students on computer programming
modules in an undergraduate University degree course. Using histori-
cal data from previous student cohorts we built a predictive model using
logged interactions between students and online resources, as well as stu-
dents’ progress in programming laboratory work. Predictions were cal-
culated each week during a 12-week semester. Course lecturers received
student lists ranked by their probability of failing the next computer-
based laboratory exam. At-risk students were targeted and offered assis-
tance during laboratory sessions by the lecturer and laboratory tutors.
When we group students into two cohorts depending on whether they
failed or passed their first laboratory exam, the average margin of im-
provement on the second laboratory exam between the higher and lower-
performing students was four times higher when our predictions were run
and subsequent laboratory support targeted at these students, compared
to students from the year our model was trained on.

Keywords: Computer science education, Learning Analytics, Predic-
tion

1 Introduction

Programming is challenging and few students find it easy at first. The mean
worldwide pass rate for the first introductory programming course, denoted CS1,
has been estimated at 67% [2]. In research, there has been significant interest in
looking for factors that motivate students to succeed in CS1 and master a pro-
gramming skill set. Particularly, researchers have been identifying weak students
by looking at their characteristics, behaviour and performance. More recently,
researchers have shifted to a more data-driven approach by analysing program-
ming behaviour, including patterns in compilations and programming states.
These parameters are substantially more effective at reflecting the students’ ef-
fort and learning progress throughout their course.



2

In addition, students at universities usually interact with a Virtual Learning
Environment (VLE) and leave a digital trace that has previously been leveraged
to predict student performance in exams. The most popular online educational
systems are Moodle and Blackboard. Purdue University’s Course Signals project
was a pioneer in this area [1]. Learning Analytics have proven to provide a good
indicator of how students are doing by looking at how online resources are being
consumed. In programming classes and blended classrooms, students leave a far
greater digital footprint we can leverage to improve their experience and help to
identify those in need [4].

This paper presents a system that uses machine learning techniques by com-
bining engagement and effort predictors to classify students in an introductory
programming module at an earlier stage. A retrospective analysis was carried out
to verify the viability of our project after gathering data for a year and pseudo
real-time predictions were run every week the year on a new cohort of students.
Our two research questions were firstly to determine how accurately could pre-
dictive models using engagement and progress features, perform in identifying
students in need of support and secondly whether identifying such weaker stu-
dents for subsequent laboratory mentoring have any impact on the gap between
higher and lower-performing students?

2 Data collection

Dublin City University’s Computer Programming I module, is a core and funda-
mental subject taught during the first semester of the first year of the honours
Bachelors degree in Computer Applications. Students learn the fundamentals of
computer programming. The course combines four hours of taught lectures with
four more hours of supervised laboratory work using the Python language. A
previous version of CS1 was taught using Java before it was redesigned. The cur-
rent version with Python has been taught for two academic years, 2015/2016 and
2016/2017. Students are assessed by taking a number of laboratory computer-
based programming exams, typically two or three during the semester. Each
laboratory exam contributes equally to their continuous assessment mark which
is 60% of the overall grade for the module. 138 students registered for CS1 dur-
ing 2015/2016 and 128 students in 2016/2017. The CS1 Lecturer developed a
custom Virtual Learning Environment (VLE) for the teaching of computer pro-
gramming. This platform is used in a variety of courses in CS, including CS1.
Like a conventional VLE, students can go online and browse course material
and can also submit and verify their laboratory work. On every programming
submission for the laboratory exercises, a set of unit tests are run.

3 Predictive modelling

We developed a predictive model that uses interaction logs from student pro-
gramming work to predict their performance in laboratory computer-based pro-
gramming exams.



3

3.1 Students’ Digital Footprints in CS1

The data sources we leverage in order to model student behaviour in CS1 are:

– Programming submissions: The custom platform allows students to sub-
mit their laboratory programs and provides instant feedback for each sub-
mission based on a suite of unit tests.

– Interaction logs: Students interact online with the course’s custom VLE
and every instance of student access to a page of any kind is recorded and
stored.

Figure 1 shows student activity on the course VLE and the programming
submissions during 2015/2016. The laboratory sessions for the 12-week semester
are ticked on the X-axis, Tuesdays and Thursdays. The submission platform is
introduced at a later stage as students get familiar with Python and learn first
how to run and debug their programs locally.

20
15
-09

-22

20
15
-09

-24

20
15
-09

-29

20
15
-10

-01

20
15
-10

-06

20
15
-10

-08

20
15
-10

-13

20
15
-10

-15

20
15
-10

-20

20
15
-10

-22

20
15
-10

-27

20
15
-10

-29

20
15
-11

-03

20
15
-11

-05

20
15
-11

-10

20
15
-11

-12

20
15
-11

-17

20
15
-11

-19

20
15
-11

-24

20
15
-11

-26

20
15
-12

-01

20
15
-12

-03

20
15
-12

-08

20
15
-12

-10

Lab dates

0

1000

2000

3000

4000

5000

6000

7000

8000

W
e
b
 r
e
q
u
e
st
s

0

200

400

600

800

1000

1200

P
ro
g
ra
m
s 
su
b
m
it
te
d

Fig. 1. Activity levels and programs submitted for CS1 during 2015/2016

3.2 Training a predictive model

We developed a classification model trained with student activity data from
2015/2016 in order to predict student performance. The target was to predict
whether each student would pass or fail their next laboratory exam. Shortly,
we will assess whether we can find patters of programming work and engage-
ment predictors. A set of features were generated for each student based on raw



4

log data, interaction events for students accessing material and corresponding
programming submissions.

A set of binary classifiers, one per week, were built to predict a student’s
likelihood of passing or failing the next computer-based laboratory exam. In
2015/2016, there was a mid-semester exam and an end-of-semester exam. On
that case, to clarify, classifiers from week 1 to 6 were trained to predict the
mid-semester outcome (pass or fail for each student) and from 7 to 12 the end-
of-semester’s outcome. At a given week, the features mentioned above were ex-
tracted from that week’s activity and programming submissions. A classifier was
built by concatenating all the features from previous weeks’ classifiers and ap-
pending the new ones in order to account for each student’s progression and
engagement throughout the course. The empirical error minimization approach
was employed to determine the learning algorithm with the fewest empirical er-
rors from a bag of classifiers C [3]. The misclassification error, also known as
empirical error or empirical risk, was calculated for each learning algorithm for
each week of the semester. For consistency, we picked the learning algorithm
which minimized the empirical risk on average for the 12 weeks which was then
used for each weekly classifier.

3.3 Retrospective Analysis

Following the Empirical Error Minimization approach, we selected the Logistic
Regression classification algorithm which gave lowest empirical risk on average
for the 12 weeks, 29.84%, based on our training data using 10-fold CV. The
bag of classifiers C also contained SVMs with linear and Gaussian kernels, a
decision tree, a K-neighbours classifier and a Random Forest. The retrospective
analysis carried out on CS1 using 2015/2016’s data shows we can successfully
gather student data about their learning progress and leverage that information
for predictions, reaching a usable accuracy. We then progressed to run pseudo
real-time predictions every week on the incoming 2016/2017’s dataset.

4 Results

Predictions were calculated on a pseudo real-time basis every week for students
during 2016/2017 based on a model trained with data from 2015/2016. Individual
reports were sent to the CS1 Lecturer every week. An anonymised snapshot
of class predictions can be found in Figure 2. At-risk students were targeted
and offered assistance and mentoring during laboratory sessions. We will now
examine how the results impact the two specific research questions we set out
to ask.

4.1 Automatic Classification of At-risk Students

In order to evaluate how our predictions performed, we compared the correspond-
ing weeks’ predictions with the actual results of the three laboratory exams that



5

Fig. 2. Anonymised snapshot of predictions with associated probabilities

took place in weeks 4, 8 and 12 in 2016/2017. As the semester progressed, our
early alert system gathered more information about students’ progression and,
hence, our classifiers learned more as shown by the increased F1-score metric
reaching 64.38% on week 12. In short, we could automatically distinguish in a
better way who is going to pass or fail the next laboratory exam. In addition,
the prediction passing probabilities associated with each student for the last
laboratory exam was highly correlated with their performance. Pearson’s linear
correlation (r = 0.57; p-value < 0.0001) and Spearman’s non-linear (r = 0.62,
p-value < 0.0001) were very confident on that relationship.

4.2 Higher and lower performing students

If we cluster students into higher and lower-performing groups based on their
results in the first laboratory assessment and whether they failed or passed that
exam, the differential learning improvement was four times more the year the
predictions were generated and the reports were sent than the year our model is
trained with, see Table 1.

Table 1. Differential learning improvement between academic years

Academic
year

Cohort
Number
Students

1-Exam
Average

2-Exam
Average

Improvement Differential
Learning

differential

2015/16

Passing
1-Exam

80 67.38% 79.50% +12.12%
+11.52%

4.36

Failing
1-Exam

58 13.47% 37.12% +23.64%

2016/17

Passing
1-Exam

101 86.63% 47.57% -39.06%
+50.26%

Failing
1-Exam

28 10.00% 21.20% +11.20%

It is important to note higher-performing students do not have the same room
for improvement than lower-performing students so for higher-performing stu-



6 REFERENCES

dents, maintaining their grade is an accomplishment. However, we are trying to
measure learning and whether lower-performing students tend to learn more in
our blended classrooms and complete more programs with mentoring and further
assistance.

5 Conclusion & Future Work

Predictive models using engagement and programming effort as drivers have
proven to contain useful information about the student’s learning progress and
behaviour. Automatically classifying students and notifying the lecturer and tu-
tors along with offering assistance to weak students, helps those at-risk to learn
more and reduce the gap between higher-performing students and them. We be-
lieve this approach could be applicable to other courses not only in introductory
programming but CS2 or even Mathematics and other courses with significant
amount of laboratory material or programming work which students need to
check and complete in a weekly basis.

Lastly, we are excited to automatically identify students having difficulties on
CS1, offer them assistance and measure how that aids their learning. We believe
computer programming is an ability but also a skill that needs work to help it
develop. Our contribution is in providing a set of tools that help and encourage
the student’s learning and interest in programming.

6 Acknowledgements

This research was supported by the Irish Research Council in association with
the National Forum for the Enhancement of Teaching and Learning in Ireland
under project number GOIPG/2015/3497, and by Science Foundation Ireland
under grant number 12/RC/2289. The authors are indebted to Dr. Stephen
Blott, Lecturer on the module which is the subject of this work, for his help.

References

[1] Kimberly E Arnold and Matthew D Pistilli. “Course Signals at Purdue:
Using learning analytics to increase student success”. In: Proceedings of the
2nd international conference on learning analytics and knowledge. ACM.
2012, pp. 267–270.

[2] Jens Bennedsen and Michael E Caspersen. “Failure rates in introductory
programming”. In: ACM SIGCSE Bulletin 39.2 (2007), pp. 32–36.

[3] L Gyorfi, L Devroye, and G Lugosi. A probabilistic theory of pattern recog-
nition. 1996.

[4] Petri Ihantola et al. “Educational data mining and learning analytics in
programming: Literature review and case studies”. In: Proceedings of the
2015 ITiCSE on Working Group Reports. ACM. 2015, pp. 41–63.


